31. Diastereoselective Synthesis of Cyclododeca-1,6-diallenes (= Cyclododeca-1,2,6,7-tetraenes)

by Christoph Boss and Reinhart Keese*
Departement für Chemie und Biochemie der Universität Bern, Freiestrasse 3, CH-3012 Bern

(23.VIII.96)

Abstract

The synthesis of substituted cyclododeca-1,6-diallenes ($=$ cyclododeca-1,2,6,7-tetraenes) from cyclododeca-5,11-diyne-1,4-diols is described (Schemes 1 and 3). The ca.1:1 mixtures of the stereoisomers of the cyclododeca1,6 -diallenes were formed in high yields from the $c a .1: 1$ diastereoisomer mixtures of the 1,4 -disubstituted cyclododeca- 5,11 -diynes by reactions with $\mathrm{Me}_{2} \mathrm{CuLi}$ or $t-\mathrm{BuMgCl} / \mathrm{Cu}^{1} \mathrm{I}$. In mechanistically relevant experiments with the pure diastereoisomers of 1,4-dimethylcyclododeca-5,11-diyne-1,4-diol, it is demonstrated that the configuration is conserved in these reactions. The first synthesis of a 1 -substituted cyclododeca- 2,8 -diyne bearing only one propargylic leaving group gives access to a mixed 12-membered allen-yne (Scheme 5).

Introduction. - The intriguing selectivity of allenes in their reactions with electrophiles, radicals, and nucleophiles makes them attractive precursors for $\mathrm{C}-\mathrm{C}$ bond forming reactions [1]. They are readily available by a variety of methods, many of which make use of $S_{\mathrm{N}} 2^{\prime}$-type reactions of propargylic precursors or the MeLi -induced opening of geminal dibromocyclopropanes [2-16]. The chiral nature of disubstituted allenes, predicted by van't Hoff, led to the investigation of their configuration which clearly shows that 1,3 -disubstituted allenes exist as enantiomers. For cyclic compounds, the minimal ring size, which would allow the strainless incorporation of the linear $\mathrm{C}=\mathrm{C}=\mathrm{C}$ structure and isolation of these allenes was of particular interest: cyclonona-1,2-diene is the smallest stable cyclic allene which has been isolated [1] [17].

For cyclic diallenes, it has been established by Sondheimer that the cyclododeca-1,7diallene ($=$ cyclododeca-1,2,7,8-tetraene) $\mathbf{1}$ exist in both, the meso and the racemic C_{2} form [18]. In the cyclodecane series, only the meso form of the cyclodeca-1,6-diallene (= cyclododeca-1,2,6,7-tetraene) $\mathbf{2}$ had been prepared and its structure determined [19].

rac-1

meso-1

meso-2

Recently, we developed efficient synthetic routes to cyclododeca-2,8-diynes with substituents at the propargylic positions of the two alkyne groups [20] and subsequently explored their transformation into cyclic 1,6 -diallenes. Due to their ready accessibility
and their stability, the cyclododeca-5,11-diyne-1,4-diols 3a and 7a with tertiary- and secondary-alcohol groups, respectively, were chosen as precursors for the synthesis of the cyclododeca-1,6-diallenes 4 and 8 .

Results and Discussion. - When a ca. 1:1 mixture of the diastereoisomers of 1,4-dimethylcyclododeca-5,11-diyne-1,4-diyl diacetate (3b) was treated with $\mathrm{Me}_{2} \mathrm{CuLi}$, the cyclododeca-1,6-diallene 4 was formed as a ca.1:1 diastereoisomer mixture in 90% yield (Scheme 1). The ${ }^{13} \mathrm{C}$-NMR of 4 showed 16 lines, and the GC analysis revealed two signals in a ca. 1:1 ratio which, according to GC/MS, showed both the same fragmentation pattern from $m / z 216$ for M^{+1}).

Scheme 1

a) $\mathrm{Ac}_{2} \mathrm{O}, \mathrm{Et}_{3} \mathrm{~N}, \mathrm{DMAP}$, r.t., 10 h. b) $\mathrm{LiCuMe}_{2}, \mathrm{Et}_{2} \mathrm{O},-15^{\circ}$.

When the same reaction conditions were applied to the diastereoisomer mixture (ca. $1: 1$) of the acyclic 3,6-dimethylocta-1,7-diyne-3,6-diyl diacetate ($\mathbf{5 b}$), the diallene $\mathbf{6}$ was also obtained as a ca. 1:1 diastereoisomer mixture in 91% yield (Scheme 2). This was apparent from the double set of signals in the ${ }^{13} \mathrm{C}-\mathrm{NMR}$ spectrum of 6 . Due to its thermal lability, $\mathbf{6}$ could not be analyzed by GC [23] [24].

Scheme 2

meso-6

rac-6
a) $\mathrm{Ac}_{2} \mathrm{O}, \mathrm{Py}, \mathrm{DMAP}, 0^{\circ}, 1.5$ h, then r.t., 24 h. b) $\mathrm{LiCuMe}_{2}, \mathrm{Et}_{2} \mathrm{O},-15^{\circ}$.

In a further transformation, a ca. 1:1 diastereoisomer mixture 7b reacted with t - BuMgCl and $\mathrm{Cu}^{\mathrm{I} I}$ to the $1,8-\mathrm{di}($ tert-butyl)cyclododeca-1,6-diallene $\mathbf{8}$ in 72% yield [8] (Scheme 3). The diastereoisomeric meso- and rac-8 were formed in a ca. 1:1 ratio, which

[^0]
Scheme 3

a) \square 7a $\begin{aligned} & \mathrm{R}=\mathrm{H} \\ & \square \text { b } \mathrm{R}=\mathrm{Ms}\end{aligned}$

rac-8

$$
\text { a) } \mathrm{Et}_{3} \mathrm{~N}, \mathrm{MsCl}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{THF}, 0^{\circ} \text {. b) } t \mathrm{BuMgCl}, \mathrm{Cul}, \mathrm{THF},-30^{\circ} \text {. }
$$

was confirmed by the double set of signals in the ${ }^{13} \mathrm{C}-\mathrm{NMR}$ and the GC analysis with a chiral stationary phase.

In a mechanistically relevant experiment, separate transformations of the pure diastereoisomers of $\mathbf{3 b}$, obtained by acetylation of the pure diastereoisomers of $\mathbf{3 a}$, led to products each containing a single diastereoisomer of 4 . The ${ }^{13} \mathrm{C}$-NMR spectra showed different sets of 8 signals. According to GC analyses on a chiral stationary phase, the precursor meso-3b was transformed into meso-4, whereas rac-4 was obtained from the rac-precursor ${ }^{2}$).

These results might be interpreted as follows: the $S_{\mathrm{N}} 2^{\prime}$ reactions can overall follow a trans or a cis pathway, with the trans pathway usually being favored [7] [10] [12] (trans refers to the incoming nucleophile and the leaving group). For a trans pathway, it is reasonable to assume that these substitution reactions occur in a plane perpendicular to the idealized plane of the ring system, because only cis substitutions could occur in-plane. For the formation of meso- 4 by two sequential trans- $S_{\mathrm{N}} 2^{\prime}$ substitutions, the pathway for the second propargylic displacement can be pictured as shown in $9 \mathbf{a}$. In the case of rac-3b, the second trans substitution reaction with $\mathrm{Me}_{2} \mathrm{CuLi}$ may proceed via an intermediate with a conformation as depicted in $\mathbf{9 b}$. Inspection of models indicate that there is severe interaction between the Me group introduced in the first $S_{\mathrm{N}} 2^{\prime}$ reaction and the CH_{2} group in the γ-position. The molecule might, therefore, adopt the less strained conformation 9 c where the CH_{2} groups now interfere with the trans-mode of Me^{-}attack in the propargylic position. Alternatively, the stereochemical pathway of the transformation $\mathbf{3 b}$ to $\mathbf{4}$ could proceed similarly to that proposed for 7 b to $\mathbf{8}$ (see below). The stereospecific results imply that in rac- $\mathbf{3 b}$, the expected steric interaction is not strong enough to change the mode of the $S_{\mathrm{N}^{\prime}} 2^{\prime}$ reaction from trans to cis as described for other examples [7]. These facts only show that the configuration is preserved in the reactions of meso- and rac-3b but do not answer the question of whether the chirality transfer occurs via a cis or a trans mode in these cyclic systems [25] ${ }^{3}$).

[^1]

9a

9b

9c

Applying these concepts of steric hindrance to the reaction of $\mathbf{7 b}$ to the diallene $\mathbf{8}$, the stereochemical course of the substitution can be rationalized by assuming that a conformational change will occur after the first $S_{\mathrm{N}}{ }^{2}$ reaction. This would lead to an intermediate with a quasi-equatorial t-Bu group and an essentially unhindered alkyne for the second trans-substitution proceeding via 10 b to 10 c and to the conformation of meso-8 depicted in Scheme 4. This interpretation is supported by AM1 calculations of a tert-butylcyclododeca-1-allen-7-yne, which gave a conformation with a quasi-equatorial tert-butyl group. The transformation of $\operatorname{rac}-7 \mathrm{~b}$ to $\mathrm{rac}-\mathbf{8}$ can similarly be analyzed according to this scheme.

Scheme 4. Conformational Analysis of the Transformation of meso-7b to meso-8

As a first example of the 'missing link' between the dialkynes $\mathbf{3 a}, \mathbf{b}$ and $\mathbf{7 a}, \mathbf{b}$ and the diallenes 4 and 8 , the cyclic allen-yne compound $\mathbf{1 2}$ was prepared from the mono-functionalized dialkyne 11 b [20].

Concluding Remarks. - The transfer of chirality from the propargylic positions in the cyclic alkynes by $S_{\mathrm{N}}{ }^{2}$-type reactions to the allenes can be explained in terms of the conformational constraints of the ring system and by steric interactions in the course of the second $S_{\mathrm{N}} 2^{\prime}$ reaction. In the case of $\mathbf{3 b}$, it has been proven that the diastereoisomers

Scheme 5

a) $\mathrm{MsCl}, \mathrm{Et}_{3} \mathrm{~N}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{THF}, 0^{\circ}, 2.5$ h. b) ${ }^{\mathrm{t}} \mathrm{BuMgCl}, \mathrm{Cul}, \mathrm{THF},-30^{\circ}$.
are transformed into the diastereoisomers of the tetramethylcyclododeca-1,6-diallene 4 stereospecifically with conservation of the diastereoisomeric relationship.

The ready access of the cyclic 1,6 -dialienes $\mathbf{4}$ and $\mathbf{8}$ and the cyclic allen-yne $\mathbf{1 2}$ calls for a study of their transannular reactions.

We are grateful to the Stipendienfonds der Basler Chemischen Industrie for a stipend to C.B. and to the Swiss National Science Foundation for generous support of this work (project No. 20.37270.93 and 20-43565.95). The authors would like to thank P. Hübscher and D. Lehmann who have contributed with their excellent experimental skills to the success of these investigations and A. Saxer for thorough GC analyses.

Experimental Part

General. Chemicals were purchased from commercial suppliers and used without further purification. MeLi (Fluka pract.) was used as a 1.6 m soln. in $\mathrm{Et}_{2} \mathrm{O}$. THF was dried by distillation from $\mathrm{Na}, \mathrm{Et}_{2} \mathrm{O}$ from NaH . DMAP $=4$-(dimethylamino) pyridine. After workup by pouring the mixture onto sat. $\mathrm{NH}_{4} \mathrm{Cl}$ soln. and extraction with $\mathrm{Et}_{2} \mathrm{O} /$ pentane $1: 1$, the solns. were dried $\left(\mathrm{MgSO}_{4}\right)$. TLC: silica-gel plates $S I L$ G/UV V_{254} (Macherey \& Nagel). GC: Hewlett-Packard-HP-5890 instrument (He, 43 kPa) with a HP-5-Ultra capillary column (length 10 m , i.d. $0.2 \mathrm{~mm})$ and a temp. program $40-220^{\circ}\left(3^{\circ} / \mathrm{min}\right)$; chiral analyses at 20 kPa with a modified cyclodextrin as chiral stationary phase; column $A(10 \mathrm{~m}$, d.f. $0.25 \mu \mathrm{~m}$, i.d. 0.3 mm$) 100 \%$ heptakis $\{2,3$-di- O-acetoxy- 6 - O-[(tert-butyl)dimethylsilyll $\}-\beta$-cyclodextrin in OV 1701 and variable temp. programs; t_{R} in min. Prep. HPLC: 715004 ET--250/ 10-Nuc. 50-7 column (Macherey-Nagel); flow $12 \mathrm{ml} / \mathrm{min}$. M.p.: Büchi-510 melting-point apparatus; uncorrected. IR Spectra: in CHCl_{3}; Perkin-Elmer-782-IR spectrophotometer. NMR Spectra: in CDCl_{3} or $\left(\mathrm{D}_{6}\right)$ acetone; Bruker-AC-300 spectrometer (${ }^{1} \mathrm{H}, 300 \mathrm{MHz} ;{ }^{13} \mathrm{C}, 75 \mathrm{MHz}$); chemical shifts δ in ppm rel. to internal $\mathrm{CHCl}_{3}(\delta$ 7.27) or (D_{6}) acetone ($\delta 2.04$) for ${ }^{1} \mathrm{H}-\mathrm{NMR}$ and $\mathrm{CDCl}_{3}(\delta 77.0)$ or (D_{6})acetone ($\delta 29.8$) for ${ }^{13} \mathrm{C}-\mathrm{NMR}$; stack = heavily overlapping signals. MS: Varian-MAT-CH7A (70 eV, EI) and Fisons-Autospec-Q spectrometer; in $m / z\left(\right.$ rel. $\%$) GC/MS: VG-Autospec spectrometer. Reactions were normally performed under Ar or N_{2}.

1. Allene Precursors 3b, 5b and 11b. 1,4-Dimethyl-cyclododeca-5,11-diyne-1,4-diyl Diacetate (3b). Under the same conditions as described for $\mathbf{5 b}$ (see below), 0.2 g (0.91 mmol) of 1,4-dimethylcyclododeca-5,11-diyne-1,4-diol (3a) [20] gave $0.083 \mathrm{~g}(30 \%)$ of $\mathbf{3 b}$ as a colorless liquid. Better yields were obtained by dissolving $\mathbf{3 a}(0.143 \mathrm{~g}$, $0.65 \mathrm{mmol})$ in $\mathrm{Ac}_{2} \mathrm{O}(4 \mathrm{ml})$ followed by slow addition of $\mathrm{Et}_{3} \mathrm{~N}(0.262 \mathrm{~g}, 2.29 \mathrm{mmol})$ and DMAP $(0.079 \mathrm{~g}$, 0.65 mmol) and stirring at r.t. for 10 h . Workup and chromatography with $\mathrm{AcOEt} /$ hexane $2: 1$ yielded 0.168 g (85%) of 3b as a colorless liquid. The pure diastereoisomers of 3b were obtained by separate transformation of the pure diastereoisomers of 3a, obtained by crystallization [20]. R_{f} (meso/rac) 0.60 (AcOEt/hexane 2:1). GC (meso/rac): $t_{R} 33.98,34.17$ (ca. 1:1). IR (meso/rac): 2850s, 2225w, $1710 \mathrm{~m}, 1330 \mathrm{~s}, 1240 \mathrm{vs}, 1170 \mathrm{~s}, 1100 \mathrm{~s}, 1080 \mathrm{vs}$, $1020 s, 930 s$. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\left(\mathrm{D}_{6}\right)\right.$ acetone; meso/rac): $1.56-1.78(2 s+$ stack; 10 H$) ; 1.81-1.89(d, 2 \mathrm{H}) ; 2.020(s, 3 \mathrm{H})$, $2.023(s, 3 \mathrm{H}) ; 2.12-2.32$ (stack, 4 H$) ; 2.32-2.43$ (stack, 2 H). ${ }^{13} \mathrm{C}$-NMR ($\left(\mathrm{D}_{6}\right)$ acetone): rac-3b: $19.10(t) ; 21.75(q)$; $26.50(q) ; 27.67(t) ; 38.82(t) ; 76.58(s) ; 82.15(s) ; 86.20(s) ; 167.43(s) ;$ meso-3b $19.00(t) ; 21.40(q) ; 25.93(q)$; $27.56(t) ; 38.53(t) ; 76.59(s) ; 82.04(s) ; 86.33(s) ; 167.41(s)$. MS (meso/rac): no $M^{+}, 234(5), 220(3), 219(7), 203(58)$, 192(29), 187(30), 173(11), 169(11), 159(22), 145(16), 143(18), 131(26), 119(13), 117(13), 105(19), 91(24), 77(13), 43(100).

3,6-Dimethylocta-1,7-diyne-3,6-diyl Diacetate (5b). To a soln. of 3,6-dimethylocta-1,7-diyne-3,6-diol (0.5 g , 3.01 mmol ; 5a) [20] in pyridine (25 ml) was slowly added $\mathrm{Ac}_{2} \mathrm{O}(0.97 \mathrm{~g}, 9.06 \mathrm{mmol}$) and DMAP (0.15 g , 1.23 mmol) at 0° and stirred for 1.5 h . The mixture was warmed to r.t. and stirring continued for 24 h . Workup and chromatography with $\mathrm{Et}_{2} \mathrm{O}$ gave $0.45 \mathrm{~g}(60 \%)$ of $\mathbf{5 b}$. White solid. M.p. $52^{\circ} . R_{\mathrm{f}} 0.68\left(\mathrm{Et}_{2} \mathrm{O}\right) . \mathrm{GC}: t_{\mathrm{R}} 12.45$, 12.54 (52:48). IR: 3310s, 3000 m , 2940 m , 2120w, 1740 vs , $1445 \mathrm{~m}, 1370 \mathrm{~s}$, $1240 \mathrm{vs}, 1175 \mathrm{~m}, 1060 \mathrm{~m}, 1015 \mathrm{~m}, 940 \mathrm{~m}$. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right): 1.59(s, 6 \mathrm{H}) ; 1.92(s, 6 \mathrm{H}) ; 1.92-2.11$ (stack, 4 H$) ; 2.49(s, 2 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right):$ major isomer: $21.80(q) ; 26.42(q) ; 36.05(t) ; 73.66(s) ; 74.10(d) ; 83.32(s) ; 169.20(s) ;$ minor isomer: $21.80(q) ; 26.32(q)$; $35.99(t) ; 73.64(s) ; 74.06(s) ; 83.29(s) ; 169.20(s)$. GC-MS: $208\left([M-43]^{+}, 0.5\right), 166(24), 165\left([M-43-43]^{+}, 27\right)$, 149(10), 138(15), 137(10), 133(17), 117(11), 116(11), 105(13), 91(18), 80(19), 79(33), 69(9), 53(13), 43(100). Anal. calc. for $\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{O}_{4}$ (250.29): C67.18, H7.25; found: C67.46, H7.43.

Cyclododeca-2,8-diyn-1-yl Methanesulfonate (11b). As described in [20], cyclododeca-2,8-diyn-1-ol (0.1 g , $0.57 \mathrm{mmol} ; 11 \mathrm{a})$ [20] was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(7 \mathrm{ml}) \mathrm{at}-5^{\circ}$. After the addition of $\mathrm{Et}_{3} \mathrm{~N}(0.234 \mathrm{~g} 2.31 \mathrm{mmol})$ and $\mathrm{MsCl}(0.216 \mathrm{~g}, 1.88 \mathrm{mmol})$, the mixture was stirred for 4 h at 0°. Workup with 2 N HCl and extraction with $\mathrm{Et}_{2} \mathrm{O}$ gave $0.132 \mathrm{~g}(91 \%)$ of 11 b as a white powder which could be used without further purification. $R_{f} 0.73\left(\mathrm{Et}_{2} \mathrm{O}\right)$. IR: $2930 \mathrm{vs}, 2860 \mathrm{~s}, 2235 \mathrm{~m}, 1740 \mathrm{~m}, 1680 \mathrm{~m}, 1315 \mathrm{~m}, 1165 \mathrm{vs}, 1090 \mathrm{~m}, 1010 \mathrm{~m}, 965 \mathrm{~s}, 900 \mathrm{vs} .{ }^{1} \mathrm{H}-\mathrm{NMR}$ (D_{6})acetone): 1.59-1.99 (stack, 6H); 2.00-2.40 (stack, 8 H); $3.19(s, 3 \mathrm{H}) ; 5.24(d m, 1 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}$ ((D. D_{6})acetone): $19.10(t)$; $19.30(t) ; 19.39(t) ; 24.59(t) ; 27.33(t) ; 28.40(t) ; 35.42(t) ; 39.13(q) ; 73.13(d) ; 78.08(s) ; 81.48(s) ; 82.32(s) ; 90.95(s)$. MS: $255\left([M+1]^{+}, 0.5\right), 254\left(M^{+}, 4\right), 221(5), 220(23), 206(15), 205(77), 189(5), 175(20), 158(24), 157(32), 147(22)$, 143(33), 131(40), 130(52), 129(77), 128(50), 117(55), 115(66), 105(41), 103(33), 91(87), 81(27), 79(100), 78(36), $77(60), 67(39), 65(42), 55(40), 51(36), 41(61), 39(66)$.
2. Acylic and Cyclic Diallenes 4, 5, and $\mathbf{8}$ and Allen-yne 12. 1,3,6,8-Tetramethylcyclododeca-1,2,6,7-tetraene (4). To a slurry of $\mathrm{CuI}(0.244 \mathrm{~g}, 1.28 \mathrm{mmol})$ in $\mathrm{Et}_{2} \mathrm{O}(2.6 \mathrm{ml})$ was slowly added $\mathrm{MeLi}(1.60 \mathrm{ml}, 1.6 \mathrm{~m}, 2.56 \mathrm{mmol})$ at -15°. After 20 min , meso- $\mathbf{3 b}(0.098 \mathrm{mg}, 0.324 \mathrm{mmol})$ in $\mathrm{Et}_{2} \mathrm{O}(0.8 \mathrm{ml})$ was added and stirred at -10° for 30 min . The mixture was warmed to r.t. and stirred for another 24 h . Workup and chromatography with pentane gave meso-4 ($63 \mathrm{mg}, 90 \%$) as a colorless liquid. Under the same conditions, the transformation of rac-3b gave rac-4 in 91% yield.
meso-4: $R_{\mathrm{r}} 0.61$ (pentane). GC (cf. Footnote 2): $t_{\mathrm{R}} 26.49$; column A (isothermal at 120°): $t_{\mathrm{R}} 47.70$. IR: 2960 vs , $2940 \mathrm{vs}, 2900 \mathrm{vs}, 2860 \mathrm{vs}, 1965 \mathrm{w}, 1470 \mathrm{~s}, 1455 \mathrm{~s}, 1370 \mathrm{~s} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right): 1.63(\mathrm{~s}, 6 \mathrm{H}) ; 1.67(\mathrm{~s}, 6 \mathrm{H}) ; 1.68-1.80$ (stack, 4 H); 1.93-2.06 (stack, 4 H); 2.14-2.36 (stack, 4 H$) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right): 19.48(q) ; 19.70(q) ; 25.61(t)$; $31.82(t) ; 32.25(t) ; 96.35(s) ; 97.64(s) ; 199.40(s) . \mathrm{MS}: 217\left([M+1]^{+}, 17\right), 216\left(M^{+}, 100\right), 201(27), 187(13), 173(20)$, 161(6), 160(8), 159(49), 146(9), 145(40), 133(17), 131(15), 119(33), 105(18), 91(16), 77(12), 67(5), 41(15). HR-MS: $216.1876\left(\mathrm{C}_{16} \mathrm{H}_{24}^{+}\right.$; calc. 216.1878).
rac-4: $R_{\mathrm{f}} 0.61$ (pentane). GC (cf. Footnote 2): $t_{\mathrm{R}} 25.82$; column $A\left(60-200^{\circ}\left(2^{\circ} / \mathrm{min}\right)\right): t_{\mathrm{R}} 47.91,48.50(1: 1)$. IR: $2960 \mathrm{vs}, 2940 \mathrm{vs}, 2900 \mathrm{vs}, 2860 \mathrm{vs}, 1965 w, 1470 \mathrm{~s}, 1455 \mathrm{~s}, 1370 \mathrm{~s} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right): 1.628(s, 6 \mathrm{H}) ; 1.634(\mathrm{~s}, 6 \mathrm{H})$; $1.73-2.03$ (stack, 8 H$) ; 2.22(d, 2 \mathrm{H}) ; 2.25(d, 2 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right): 18.28(q) ; 20.97(q) ; 26.37(t) ; 32.03(t) ;$ $33.29(t) ; 96.67(s) ; 97.18(s) ; 199.65(s)$. MS: $217\left([M+1]^{+}, 18\right), 216\left(M^{+}, 100\right), 201(24), 187(10), 173(17), 161(5)$, 160(7), 159(43), 146(7), 145(35), 133(15), 131(13), 119(30), 105(16), 91(14), 77(10), 67(5), 55(8), 41(15). HR-MS: $216.1877\left(\mathrm{C}_{16} \mathrm{H}_{24}^{+}\right.$; calc. 216.1878).

4,7-Dimethyldeca-2,3,7,8-tetraene (6). As described for 4, with $\mathbf{5 b}(1.44 \mathrm{~g}, 5.77 \mathrm{mmol})$. Workup and chromatography with pentane gave $0.85 \mathrm{~g}(91 \%)$ of 6 . Colorless liquid. $R_{\mathrm{f}} 0.72$ (pentane). GC: 6 was not stable under GC conditions [23] [24]. IR: $2950 \mathrm{vs}, 2920 \mathrm{vs}, 2900 \mathrm{vs}$, $2870 \mathrm{vs}, 1970 \mathrm{~m}, 1470 \mathrm{~s}, 1445 \mathrm{~s}, 1370 \mathrm{~s}, 1270 \mathrm{~m}, 1145 \mathrm{~m}, 995 \mathrm{~m}$. ${ }^{1} \mathrm{H}$-NMR $\left(\mathrm{CDCl}_{3}\right): 1.64(d d, 6 \mathrm{H}) ; 1.69(d, 6 \mathrm{H}) ; 2.04(s, 4 \mathrm{H}) ; 5.01($ stack, 2 H$) .{ }^{13} \mathrm{C}$-NMR $\left(\mathrm{CDCl}_{3}\right)$: major isomer: $14.83(q) ; 19.24(q) ; 32.02(t) ; 84.93(d) ; 98.44(s) ; 201.93(s) ;$ minor isomer: $14.87(q) ; 19.28(q) ; 32.08(t) ; 84.96(d)$; $98.50(s) ; 201.93(s) . \operatorname{MS}: 161\left([M-1]^{+}, 1\right), 151(6), 148(8), 147\left([M-15]^{+}, 93\right), 137(12), 133(62), 119(17), 105(29)$, 91(24), 85(17), 71(34), 57(76), 43(100).

1,8-Di(tert-butyl) cyclododeca-1,2,6,7-tetraene (8). To 7b [20] ($84 \mathrm{mg}, 0.24 \mathrm{mmol}$) and Cul ($93 \mathrm{mg}, 0.45 \mathrm{mmol}$) in THF (5 ml) was added at -30° a freshly prepared $t-\mathrm{BuMgCl}$ soln. in $\mathrm{Et}_{2} \mathrm{O}(1 \mathrm{ml}, 1.0 \mathrm{mmol}$; obtained from Mg ($292 \mathrm{mg}, 12 \mathrm{mmol}$) and $t-\mathrm{BuCl}\left(926 \mathrm{mg}, 10 \mathrm{mmol}\right.$) in $\mathrm{Et}_{2} \mathrm{O}(10 \mathrm{ml})$). The mixture was stirred for 30 min , then warmed to r.t. and stirred for 1 h . Workup and chromatography with pentane gave $47.2 \mathrm{mg}(72 \%)$ of 8 as a colorless liquid which formed white crystals at -18°. M.p. $48^{\circ} . R_{\mathrm{f}} 0.55$ (pentane). GC: $t_{\mathrm{R}} 37.69,37.58$ (1:3); column A (isothermal at 110°): $t_{\mathrm{R}} 59.93$ (74%; meso $+1 / 2 \mathrm{rac}$), $63.24(26 \% ; 1 / 2 \mathrm{rac}):$ IR: $2975 \mathrm{vs}, 2960 \mathrm{vs}, 2920 \mathrm{vs}$, $2880 \mathrm{vs}, 2850 \mathrm{vs}, 1955 \mathrm{~m}, 1720 \mathrm{w}, 1465 \mathrm{vs}, 1450 \mathrm{vs}, 1360 \mathrm{~s}, 1340 \mathrm{~m}, 1290 \mathrm{~m}, 1240 \mathrm{~s}, 1205 \mathrm{~s}, 1090 \mathrm{~m} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right):$ $1.03(s, 18 \mathrm{H}) ; 1.78-2.34$ (stack, 12 H); 4.94-5.16 (stack, 2 H). ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right)$: major isomer: $26.58(t)$; $27.07(t) ; 29.33(q) ; 29.73(t) ; 33.29(s) ; 92.65(d) ; 113.10(s) ; 199.84(s)$; minor isomer: $26.58(t) ; 27.17(t) ; 29.46(q)$; $29.73(t) ; 33.39(s) ; 92.91(d) ; 113.30(s) ; 199.87(s)$. MS: $273\left([M+1]^{+}, 5\right), 272\left(M^{+}, 22\right), 257(5), 216(22), 215(46)$, $201(20), 193(12), 173(24), 160(20), 159(67), 131(29), 105(17), 95(17), 91(19), 85(36), 57(100), 43(33)$. HR-MS: $272.2504\left(\mathrm{C}_{20} \mathrm{H}_{32}^{+}\right.$; calc. 272.2504).

1-(tert-Butyl) cyclododeca-1,2-dien-7-yne (12). As described for 7b, with 11 b ($0.13 \mathrm{~g}, 0.512 \mathrm{mmol}$): 0.06 g (54%) of 12. Colorless liquid. $R_{\mathrm{f}} 0.39$ (pentane). GC: $t_{\mathrm{R}} 29.86$. IR: $2940 \mathrm{~m}, 2900 \mathrm{~m}, 2820 \mathrm{~s}, 2320 \mathrm{~m}, 1950 \mathrm{~m}, 1450 \mathrm{~s}$, $1435 \mathrm{vs}, 1390 \mathrm{~m}, 1360 \mathrm{vs}, 1330 \mathrm{~m}, 1110 \mathrm{vs}, 1020 \mathrm{~s}, 980 \mathrm{~m}, 900 \mathrm{~s} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right): 1.02(\mathrm{~s}, 9 \mathrm{H}) ; 1.48-1.98$ (stack, $8 \mathrm{H}) ; 2.00-2.43$ (stack, 6 H); $5.10($ stack, 1 H$) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) ; 17.89(t) ; 19.19(t) ; 25.15(t) ; 25.18(t) ; 26.44(t)$: $27.92(t) ; 28.54(t) ; 29.29(q) ; 33.53(s) ; 81.22(s) ; 83.08(s) ; 94.56(d) ; 112.74(s) ; 199.41(s)$. MS: $216\left(M^{+}, 9\right)$, 201(45), 173(26), $159(100), 145(25), 131(63), 117(49), 105(27), 91(49), 79(25), 77(23), 67(20), 57(32), 41(48)$. HR-MS: $216.1875\left(\mathrm{C}_{16} \mathrm{H}_{24}^{+}\right.$; calc. 216.1878).

REFERENCES

[1] W. R. Moore, R. C. Bertelson, J. Org. Chem. 1962, 27, 4182.
[2] P. Crabbé, E. Barreiro, J.-M. Dollat, J.-L. Luche, J. Chem. Soc., Chem. Commun. 1976, 183.
[3] P. Rona, P. Crabbé, J. Am. Chem. Soc. 1968, 90, 4733.
[4] J.-L. Luche, E. Barreiro, J.-M. Dollat, P. Crabbé, Tetrahedron Lett. 1975, 4615.
[5] P. Crabbé, H. Carpio, J. Chem. Soc., Chem. Commun. 1972, 904.
[6] P. Vermeer, I. Meijer, L. Brandsmaa, Recl. Trav. Chim. Pays-Bas 1975, 94, 112.
[7] P. Vermeer, H. Westmijze, H. Kleijn, L. A. van Dijck, Recl. Trav. Chim. Pays-Bas 1978, 97, 56.
[8] J.-L. Moreau, M. Gaudemar, J. Organomet. Chem. 1976, 108, 159.
[9] K. A. Parker, J. J. Petraitis, Tetrahedron Lett. 1977, 4561.
[10] I. Marek, P. Mangeney, A. Alexakis, J. F. Normant, Tetrahedron Lett. 1986, 27, 5499.
[11] A. Alexakis, A. Commercon, J. Villiéras, J. F. Normant, Tetrahedron Lett. 1976, 2313.
[12] A. Alexakis, P. Mangeney, J. F. Normant, Tetrahedron Lett. 1985, 6, 4197.
[13] D. J. Pasto, R. H. Shults, J. A. McGrath, A. Waterhouse, J. Org. Chem. 1978, 43, 1382.
[14] A. Claesson, L.-I. Olsson, J. Am. Chem. Soc. 1979, 101, 7302.
[15] L. A. van Dijck, B. J. Lankwerden, J. G. C. M. Vermeer, A. J. M. Weber, Recl. Trav. Chim. Pays-Bas 1971, $90,801$.
[16] L. Skattebol, Acta Chem. Scand. 1963, 17, 1683.
[17] R. P. Johnson, Mol. Struct. Energ. 1986, 3, 85.
[18] P. J. Garratt, K. C. Nicolaou, F. Sondheimer, J. Am. Chem. Soc. 1973, 95, 4582.
[19] H. Irngartinger, H.-U. Jäger, Tetrahedron Lett. 1976, 3595.
[20] C. Boss, R. Keese, Helv. Chim. Acta 1996, 79, 2164.
[21] T. Tabuchi, J. Inanaga, M. Yamaguchi, Tetrahedron Lett. 1986, 27, 5237.
[22] T. Tabuchi, J. Inanaga, M. Yamaguchi, Chem. Lett. 1987, 2275.
[23] D. J. Pasto, Tetrahedron 1984, 40, 2805.
[24] S. Braverman, Y. Duar, Tetrahedron Lett. 1978, 1493.
[25] O. Eisenstein, G. Procter, J. D. Dunitz, Helr. Chim. Acta 1978, 61, 2538.

[^0]: ${ }^{1}$) The reaction of $\mathbf{3 b}$ with H^{-}as the nucleophile using $\mathrm{Sml}_{2} / \mathrm{Pd}^{0}$ remained unsuccessful [21] [22].

[^1]: ${ }^{2}$) The GC of meso- and rac-4 contained each an additional peak ($t_{\mathrm{R}} 20.5 \mathrm{~min}$) of $30-40 \%$ intensity, whereas no by-product could be observed in their ${ }^{13} \mathrm{C}$-NMR spectra. GC/MS Spectra of this peak showed $m / z 216$ for M^{+}, identical to that of 4 . Therefore, the by-product must correspond to an isomer of 4 of unknown structure [23]. This indicates a limited thermal stability of the diastereoisomers of 4 . No additional peaks could be detected in the GC of $\mathbf{8}$ and $\mathbf{1 2}$, where the allenic unit is substituted by a t-Bu group.
 ${ }^{3}$) It is questionable, whether the model calculations which show an angle of 120° for the addition of H^{-}to $\mathrm{HC} \equiv \mathrm{CH}[25]$ are stereoelectronically relevant for the transformation of propargylic compounds like $\mathbf{3 b}$ with $\mathrm{R}_{2} \mathrm{CuLi}$.

